
m Fermi National Accelerator Laboratory

TM-1478

VFI
VME/FASTBUS Interface Routines

Dean Alleva
Development and Evaluation Group

RDiComputing
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September lo,1987

SP 0 erated by Universities Research Association Inc. under contract with the United States Department of Energy

Note Number XXXX

VFI
VME/FASTBUS Interface Routines

-Version-
S0ftware:l.O
Document:l.O

September 10, 1987

Dean Al lava
Development and Evaluation Group

RD/Computing
Fermi lab

Page 2

TABLE OF CONTENTS

1
2
3
4
5
6
6.1
6.2
6.3
6.4
7
7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
8.0
9.0

INTRODUCTION
VFI REGISTERS
OPERATION CODES
POLLING AND INTERRUPTS
STATUS REPORTING
THE CONTROL ROUTINES

VFI Initialization
Loading a Command
Execution Control
Loading CSR-8 Value

THE TRANSACTION ROUTINES ...
Read and Write Data

Single Word Transfers .
Block Transfers

Read and Write CSR
Single Word Transfers .
Block Transfers

Single Cycle Operations . .
Arbitration Cycle
Bus Release
Primary Address Cycle .
Secondary Address Cycle
Data Cycle

ERROR REPORTING ROUTINES ...
REFERENCES

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...... . . .3

...... . . .4

...... . . .5

...... . .6

...... . . .7

...... .8

...... . .8

...... . . 9

...... . . . 10

...... . . 11

...... . . 12

...... . . . 12

...... . 12

...... . . . 14

...... . 15

...... . . . 15

...... . . . 17

...... . . . 18

...... . . . 18

...... . . . 18

...... . . . 19

...... . . . 20

...... . . 21

...... . . 22

...... . 23

Page 3

1 INTRODUCTION

This document describes the VME/FASTBUS Interface routines (VFI).
These routines where designed to enable programs written in PILS
running on a MVME 101 under Valet-plus to control
Interface [l], [2].

a VhiE/FASTBUS
The routines fall into two general types, control

and transaction. The control rountines, such as vmec reset, work
directly with the interface’s registers. These routines set up and
monitor operations between VME and FASTBUS. The transaction routines,
such as vfi-write dat, use the control routines to carry out complete
functions on FASTBUS. Most FASTBUS operations are implemented except
for the compound routines and some low level routines.

The routines are written in PILS, a high-level language similar
to BASIC and Pascal which is powerful and fast enough for most
applications. One of the most powerful features of the Valet/PILS
system is the ability to set
handlers directly in a program.

up exception vectors and exception
This feature is used to handle

interrupts from the VME/FB interface.

This document is divided into seven sections, the first is the
introduction. The remaining sections detail the interface’s
registers, the structure of operation codes, polling and
status reporting, the control routines,

interrupts,
and the transaction routines.

It is assumed that the reader is familiar with VME, FASTBUS, and
has some
software

knowledge of the interface’s design [2]. A copy of the VFI
is available BitNet at

“FNAL::USRSROOT:[ALLEVA.PUBLIC]&SRC”.
Fermi lab as

Page 4

2 VFI REGISTERS

The VME/FASTBUS Interface is a register controled
Parameters for a given operation are

system.
loaded into the interface’s

registers. Execution of an operation begins by setting special bits
in the control register. An operation can then be monitored by
polling the control register or through interrupts.

A brief description of each register is given below. A detailed
description of these registers is given in the document describing the
interface’s design [2].

VME Control Register: Used to start execution of an operation,
select polling or interrupts, reset the
interface, and monitor execution (using
polling.)

FASTBUS Status Register: Contains an error code if the last operation
ended with an error.

VME Interrupt Registers: There are two of these registers, one
for errors and one for success. These
registers are loaded with interrupt
vectors used to signal operation
completion.

Primary Address Register: Loaded with the FASTBUS primary address
to be used in an operation.

Secondary Address Register: Loaded with the FASTBUS secondary address
to be used in an operation.

DMA Word Count, Address, and Control: These registers are used to do
DMA transfers between the interface’s
buffer memory and FASTBUS.

Operation Register: Loaded with a code to control an operation on
FASTBUS, see the next section.

Page 5

3 OPERATION CODES

Each VME/FASTBUS operation carried out by the interface is
controled by a special code loaded into the operation register. This
code tells the interface which cycles are to be done, what MS codes to
use, as well as what special functions to carry out. The operation
register is a 32-bit register but only the lower 24 bits are
their functions are detailed below.

usable,
For a full description of the

operation register see the document describing the VME/FB interface.

BIT Number*

0
1
2
3
4
5
6
7
8-10
11
12-14
15
16
17
18
19-23

Function
- - - - - - - -

Status clock, set if status is to be returned.
Do an arbitration cycle
Do a primary address cycle
Do a secondary address cycle
Do a data cycle
Release GK (after operation)
Release AS (after operation)
Not used
Primary address cycle MS code
Not used
Data cycle MS code
Not used
Read Select, set if operation is a read
Set EG, set if EG is to be set high by interface
Block transfer, set if operation is a block transfer
Not used

* All bits are high enabled.

Page 6

4 INTERRUPTS AND POLLING

Two methods are used to monitor an operation. In polling mode,
the control register value is fetched in a loop and two bits are
checked. The Master Ready bit is set by the interface when an
operation is complete. The Error bit is set if an error occured
during execution and indicates that the status register contains the
error’s code. The status register is checked only if the Error bit is
set.

When interrupt mode is used, a loop is entered until an interrupt
flag is set by an interrupt handler. An interrupt handler is executed
upon an interrupt. Using the Valet/PILS interrupt vector routines,
two vectors are set up. One vector, loaded into the error interrupt
register, activates an error interrupt handler. The normal interrupt
register
handler.

is loaded with a vector which activates a normal interrupt
Upon execution, either of these routines will set the

interrupt flag. The status register is checked only if an error
interrupt has taken place.

This type of interrupt handling is basicly polling for an
interrupt. Valet-plus, however, has no “wait for interrupt” command.
In a more sophisticated mulitasking environment, a wait for
would enable the OS to block processes and execute others.

interrupt

Page 7

5 STATUS REPORTING

Once a command has been executed, the status may be fetched in
any of two ways. First, a call to vfi display error will return the
status code of the last command execuzed. fii display error also
prints to the display device a message indiczting thz error code
returned.

Status may also be fetched with a call to vfi-get error, which
returns status without displaying any messages. Nzte that these
routines should be called after an operation is executed.

Originally, status reporting was to be done in the interrupt
handler routines. Status was to be returned to the main program
through a parameter in the transaction routine headers. However,
Valet-plus can not handle IO (get, put, print, etc.) correctly while
interrupts from VME are pending. When a more sophisticated operating
system becomes available status reporting will be changed.

Page 8

6 THE CONTROL ROUTINES

These routines do low level operations on the interface
registers.

6.1 VFI Initialize

1) VhiEC-RESET (set-inter)
VCR

Description: Resets the interface and initializes internal VFI data values.
Should be the first VFI call in a program.

Parameters:
set-inter (INT32, input): If set to 1, VFI uses interrupts to

monitor an operation. Otherwise, VFI
uses polling.

Page g

6.2 Loading A Command

These routines are usually not used directly by a program. The
load routines are called by the transaction routines to set up the
interface registers for a operation.

1)

2)

VMEC-RUN-BLOCK (contval, primadd, secadd, dmaadd, dmawc)

Descriotion: Loads ooeration oarameters into the interface registers and
This command should be a block transfer executes the command.

command.

Parameters:
contva I (INT32, input) :
primadd (INT32, input) :
secadd (INT32, input) :
dmaadd (INT32, input) :

dmawc (INT32, input) :

Control register opcode value.
Primary address value.
Secondary address value.
Interface buffer address where transfer
starts.
Number of 32-bit words to transfer.

VMEC-RUN-NO-BLOCK (contval, primadd, secadd, buffadd)

Description: Similar to VMEC RUN-BLOCK, but this routine is used for
non-block transTers.

Parameters:
contva I (INT32, input) :
primadd (INT32, input) :
secadd (INT32, input) :
buffadd (INT32, input) :

Control register opcode value.
Primary address value.
Secondary address value.
Inferface buffer address where transfer
takes place (one word).

Page 10

6.3 Execution Control

These routines a called by VMEC RUN BLOCK or VMEC RUN NO BLOCK to
execute a command and the wait Tofor completion.
routines are not used directly by a program.

1;; general, these

1) VMEC-GO

Description: Starts the interface.

2) VMEC-WAIT

Description: Returns when interface is done with operation.

Page 11

6.4 Loading CSR-8 Value

1) VMEC LOAD-CSRB (csr8-va I ue)
VCLCSR

Description: Loads the interface’s CSR-8 register. This routine
should be used to set the CSR-8 register before any calls
to the transaction routines.

Parameter:
csr8-value (INT32, input): value for CSR-8 register.

Page 12

7 THE TRANSACTION ROUTINES

These routines do complete operations on FASTBUS from VME. These
routines are the basic building block from which more complex compound
routines can be built.

7.1 Read And Write Data

7.1.1 Single Word Transfers -

1) VFI-READ-DAT (pradd, scadd, bfadd)

Description: Does a single word transfer to the interface’s internal
memory buffer from FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input) : Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

2) VFI-WRITE-DAT (pradd, scadd, bfadd)

Description: Does a single word transfer from the interface’s internal
memory buffer into FASTBUS data space.

Parameters :
pradd (INT32, input): Primary address
scadd (INT32, input) : Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is to be taken.

3) VFI-READ-DAT-MULT (pradd, scadd, bfadd)

Description: Does a broadcast single word transfer into the
internal memory buffer from FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

4) VFI-WRITE-DAT-MULT (pradd, scadd, bfadd)

Description: Does a broadcast single word transfer from the interface’s
internal memory buffer into FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is to be taken.

Page 13

5) VFI-READ-DAT-SA (pradd, scadd, bfadd)

Description: Does a single word transfer, using the NTA register,
into the interface’s internal memory buffer from FASTBUS
data space.

Parameters :
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

6) VFI-WRITE-DAT-SA (pradd, scadd, bfadd)

Description: Does a single word transfer, using the NTA register,
from the interface’s internal memory buffer into
FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input) : Interface internal address where transfer

word is to be taken.

Page 14

7.1.2 Block Transfers -

1) VFI-READ-DAT-BLOCK (pradd, scadd, bfadd, cnt)

Description: Does a block transfer to the interface’s internal
memory buffer from FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where block

is transfered.
cnt (INT32, input): Number of 32-bit words to transfer

2) VFI-WRITE-DAT-BLOCK (pradd, scadd, bfadd, cnt)

Description: Does a block transfer from the interface’s internal
memory buffer into FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address of transfer

block.
cnt (INT32, input): Number of 32-bit words to transfer

3) VFI-READ-DAT-BLOCK-MULT (pradd, scadd, bfadd, cnt)

Description: Does a broadcast block transfer to the interface’s
internal memory buffer from FASTBUS data space.

Parameters:
pradd (INT32,
scadd (INT32,
bfadd (INT32,

cnt (INT32,

nput): Primary address
nput) : Secondary address
nput): Interface internal address where block

is placed.
nput): Number of 32-bit words to transfer

4) VFI-WRITE-DAT-BLOCK-MULT (pradd, scadd, bfadd, cnt)

Description: Does a broadcast block transfer from the interface’s
internal memory buffer into FASTBUS data space.

Parameters:
pradd (INT32,
scadd (INT32,
bfadd (INT32,

cnt (INT32,

input): Primary address
input): Secondary address
input): Interface internal address of transfer

block.
input): Number of 32-bit words to transfer

Page 15

7.2 Read And Write CSR

7.2.1 Single Word Transfers -

1) VFI-READ-CSR (pradd, scadd, bfadd)

Description: Does a single word transfer to the interface’s internal
memory buffer from FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input) : Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

2) VFI-WRITE-CSR (pradd, scadd, bfadd)

Description: Does a single word transfer from the interface’s internal
memory buffer into FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input) : Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is to be taken.

3) VFI-READ-CSR-MULT (pradd, scadd, bfadd)

Description: Does a broadcast single word transfer to the interface’s
internal memory buffer from FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

4) VFI-WRITE-CSR-MULT (pradd, scadd, bfadd)

Description: Does a broadcast single word transfer from the interface’s
internal memory buffer into FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is to be taken.

Page 16

5) VFI-READ-CSR-SA (pradd, scadd, bfadd)

Description: Does a single word transfer, using the NTA register,
into the interface’s internal memory buffer from FASTBUS
CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where transfer

word is placed.

6) VFI-WRITE-CSR-SA (pradd, scadd, bfadd)

Description: Does a single word transfer, using the NTA register,
from the interface’s internal memory buffer into
FASTBUS CSR space.

Parameters:
pradd (INT32, input) :
scadd (INT32, i “put) :
bfadd (INT32, i “put) :

Primary address
Secondary address
Interface internal address where transfer
word is to be taken.

Page 17

7.2.2 Block Transfers -

1) VFI-READ-CSR-BLOCK (pradd, scadd, bfadd, cnt)

Description: Does a block transfer to the interface’s internal
memory buffer from FASTBUS CSR space.

Parameters :
pradd (INT32, input): Primary address
acadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address where block

is transfered.
cnt (INT32, input): Number of 32-bit words to transfer

2) VFI-‘&RITE-CSR-BLOCK (pradd, scadd, bfadd, cnt)

Description: Does a block transfer from the interface’s internal
memory buffer into FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input) : Secondary address
bfadd (INT32, input): Interface internal address of transfer

block.
cnt (INT32, input): Number of 32-bit words to transfer

3) VFI-READ-CSR-BLOCK-MULT (pradd, scadd, bfadd, cnt)

Description: Does a broadcast block transfer to the interface’s
internal memory buffer from FASTBUS CSR space.

Parameters :
pradd (INT32, input): Primary address
scadd (INT32, i “put) : Secondary address
bfadd (INT32, input): Interface internal address where block

cnt (INT32,
is placed.

input): Number of 32-bit words to transfer

4) VFI_WRITE~CSR~BLOCK~MULT (pradd, scadd, bfadd, cnt)

Description: Does a broadcast block transfer from the interface’s
internal memory buffer into FASTBUS CSR space.

Parameters:
pradd (INT32, input): Primary address
scadd (INT32, input): Secondary address
bfadd (INT32, input): Interface internal address of transfer

block.
cnt (INT32, input): Number of 32-bit words to transfer

Page 18

7.3 Single Cycle Operations

7.3.1 Aribration Cycle -

1) VFI-CYCLE-ARBITRATE

Description: Does an arbitration cycle, holding onto the bus when control
is gained. Note that an error code of hex 91 (No PRIM and No
AS/AK Lock) indicates success for this routine.

7.3.2 Bus Release -

1) VFI-CYCLE-RELEASE-BUS

Description: Releases the bus by lowering CK and AS.

Page 19

7.3.3 Primary Address Cycle -

1) VFI-CYCLE-PA-DAT (pradd)

Description: Does a primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address

2) VFI-CYCLE-PA-CSR (pradd)

Description: Does a primary address cycle to CSR space.

Parameters:
pradd (INT32, input): The primary address

3) VFI-CYCLE-PA-DAT-MULT (pradd)

Description: Does a broadcast primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address

4) VFI-CYCLE PA DAT-MULT -- (pradd)

Description: Does a broadcast primary address cycle to CSR space.

Parameters:
pradd (INT32, input): The primary address

Page 20

7.3.4 Secondary Address Cycle -

1)

21

VFI-CYCLE-READ-SA (bf add)

Description: Does a secondary address cycle read. Bus mastership and primary
address cycle must be completed before using this routine.

Parameters :
bfadd (INT32, input): Internal buffer address where secondary

address is written.

VFI-CYCLE-WRITE-SA (bfadd)

Description: Does a secondary address cycle write. Bus mastership and primary
address cycle must be completed before using this routine.

Parameters :
bfadd (INT32, input): Internal buffer address where secondary

address is taken.

Page 21

7.3.5 Data Cycle -

1) VFI-CYCLE-READ-WORD (bfadd)

Description: Does a single word read cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): buffer address where word is transfered

2) VFI-CYCLE-WRITE-WORD (bfadd)

Description: Does a single word write cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): buffer address of word to transfer

3) VFI-CYCLE-READ-BLOCK (bfadd, cnt)

Description: Does a block read cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): buffer address of block
cnt (INT32, input): size of block in 32-bit

4) VFI-CYCLE-READ-WORD (bfadd)

to transfer
words

Description: Does a single word data read cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): address of word to transfer.

Page 22

8 ERROR REPORTING ROUTINES

For description of possible error codes, see the document
detailing the VME/FB interface. A returned code of hex 80 indicates
success.

1) Wi’iSPLAY-ERROR (error)

Description: Returns and displays the status code of the last
completed operation.

Parameters :
error (INT32, output): The returned error code.

2) Wi4F-ERROR (error)

Description: Same as vfi display error except that the routine
does not display any error message.

Parameters:
error (INT32, output): The returned error code.

Page 23

9 REFERENCES 9 REFERENCES

[l] Berners-Lee, T. et al. [l] Berners-Lee, T. et al.
Applications. Applications.

The VALET-PLUS, a VMEbus Microcoputer for Physics The VALET-PLUS, a VMEbus Microcoputer for Physics
Fith conference on Real Time Computer Applications in Fith conference on Real Time Computer Applications in

Nuclear, Particle and Plasma Physics- San Francisco, May 1987 Nuclear, Particle and Plasma Physics- San Francisco, May 1987

[2] Gustafsson, L.
Coprocessor.

A WE to Fastbus Interface using a Finite State Machine
FNAL internal report- September 1985.

